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1. 

The frequency of the three respective classical beams carrying a mass at various positions
were obtained by using Rayleigh’s quotient [1],

v2 =EI g 0d2y
dx21

2

dx>$g rAy2 dx+My2=x= a%, (1)

where r is the density of the beam without the concentrated mass M. For the shape
function y, a trigonometric function and the three static deflection curves involving the
mass/load were substituted, one at a time, into equation (1) to obtain the fundamental
frequency of the loaded beam [1]. The closed-form frequency expression of each case was
then presented in terms of mass ratio a(=m/M) and position parameter z(=x/l).

Four types of deflection curves [1] are again considered here: (1) yw , involving only the
concentrated mass, (2) ym in terms of only the distributed beam mass, (3) yc , containing
the combined terms, yw + ym , and (4) an appropriate trigonometric function yt [1].

In this note, an alternate form for the frequency of each case will be written in terms
of M/m (defined as b) as it is the familiar form presented in the literature by virtue of b=0
instead of a=a for the unloaded case with M=0. In the second part of this note, the
results obtained from the closed-form expressions will be compared with those given by
solving the transcendental equation [2].

2. -    

Let one now define vw , vm , vc , and vt as the associated frequency obtained from
equation (1) by using yw , ym , yc , and yt , respectively. The frequency obtained by using
Rayleigh method can be expressed symbolically as

v2 =KEI/(ml3)(Cb +C)/(Db +D), (2)

in which the parameters Cb and Db are functions of both the mass ratio (b=M/m) and
the load’s position (z= x/l), whereas C and D are independent of b.

By virtue of equation (1), the parameters for each respective case are obtained as
(a) for simply supported conditions:

vw : K=48; Cb =0, C=1; Db =168bz2(z2 −2z+1),

D=(16/105)(3z4 −6z3 − z2 +4z+2).
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vm : K=48; Cb =0, C=1;

Db =10bz2(z6 −4z5 +4z4 +2z3 −4z2 +1), D=31/63.

vc : K=48; Cb = b2z2(z2 −2z+1)+ (bz/4)(z3 −2z2 +1),

C=1/40; D=31/2520,

Db =16b3z4(z4 −4z3 +6z2 −4z+1)+ b2z2[(156/35)z6 − (624/35)z5 + (332/15)z4

−4z3 − (136/15)z2 +4z+(32/105)]+ bz[(9/35)z7 − (36/35)z6 + z5 + (3/5)z4

− z3 − (1/5)z2 + (1/4)z+(17/140)].

vt : K= p4; Cb =0, C=1; Db =2b[1−cos2 (pz)], D=1.

(b) For fixed–fixed conditions:

vw : K=192; Cb =0, C=1; D=(16/35)z(z3 −2z2 −2z+3),

Db =−64bz3(z3 −3z2 +3z−1).
vm : K=192; Cb =0, C=1; Db =(6615/4)bz4(z4 −4z3 +6z2 −4z+1),

D=21/8.

vc : K=192; C=1/8, Cb =−30b2z3(z3 −3z2 +3z−1)+ (15/2)bz2(z2 −2z+1);

Db =1920b3z6(z6 −6z5 +15z4 −20z3 +15z2 −6z+1)

+ (2/7)b[z2(108z6 −432z5 +644z4 −420z3 +105z2 −14z+9)

+ bz4(−1728z6 +8640z5 −17136z4 +16704z3 −7776z2 +1152z+144)],

D=1/21.

vt : K= p4; Cb =0, C=1; Db =(b/8)[cos2 (2pz)−2 cos (2pz)+1],

D=3/16.

(c) For clamped–free conditions:

vw : K=3; Cb =0, C=1; Db = bz3,

D=−z[(1/70)z3 − (1/4)z2 + (3/4)z−(3/4)].
vm : K=3; Cb =0, C=1; D=13/54,

Db = bz4[(5/48)z4 − (5/6)z3 + (35/12)z2 −5z+(15/4)].

vc : K=3; Cb =(bz2/4)(4bz+ z2 −4z+6), C=3/20;

Db = b3z6 + (3/4)b2z4[(11/35)z3 − z2 + z+1]

+ bz2[(9/560)z6 − (9/70)z5 + (9/20)z4 − (3/4)z3 + (9/16)z2 − (3/20)z+(13/40)],

D=13/360.

vt : K= p5; Cb =0, C=1; D=16(3p−8),

Db =32pb[cos2 (pz/2)−2 cos (pz/2)+1].

It is worth mentioning that the parameters C and D are in general more concise than those
given in terms of a(=m/M) [1].
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T 1

Fundamental frequency of loaded beams for different mass ratios and locations

b z v̄ [2] v̄w v̄m v̄c v̄t

1 0·0, 1·0 9·8695 12·5499 9·8767 9·8767 9·8696
1·0, 0·9 8·9962 9·86805 9·0328 9·0432 9·0437
0·2, 0·8 7·4541 7·63423 7·5749 7·4575 7·5898
0·3, 0·7 6·3946 6·43678 6·4953 6·3958 6·4951
0·4, 0·6 5·8468 5·85753 5·9026 5·8482 5·8887
0·5 5·6795 5·68399 5·7170 5·6809 5·6982

10 0·0, 1·0 9·8695 12·5499 9·8767 9·8767 9·8696
0·1, 0·9 5·3322 5·37843 5·7448 5·3409 5·7858
0·2, 0·8 3·2598 3·26237 3·4918 3·2599 3·5093
0·3, 0·7 2·5279 2·52832 2·6283 2·5279 2·6293
0·4, 0·6 2·2252 2·22527 2·2659 2·2252 2·2589
0·5 2·1395 2·13955 2·1632 2·1395 2·1537

3.      

In reference [2], transcendental equations were solved to obtain the frequencies for five
different sets of boundary conditions. To compare the models developed here with those
obtained from the transcendental functions, the equation for the simply supported beam
given in reference [2] is reproduced to

2 tanh g tan g+ bg[tanh g sin gz (sin gz−tan g cos gz)

+ tan g sinh gz (tanh g cosh gz−sinh gz)]=0. (3)

Rewriting equation (2) as v2 = v̄2EI/(ml3), where v̄= g2, Table 1 compares the
fundamental frequencies obtained from different models. Several points are worth noting
from Table 1.

(1) The frequencies obtained from the shape function yc , which involves both the
distributed beam mass m(=wl/g) and the concentrated mass M(=W/g), are closer to
those evaluated by the transcendental equation (3) [2].

(2) As expected, the frequencies are unchanged with respect to different weights at the
ends (z=0 and 1) due to the zero displacement.

(3) All models give similar results for cases with the weight placed near the beam’s
centre. The same finding is concluded in reference [3].

(4) In general, the frequencies obtained by using ym and yt are higher than others.
(5) As stated in reference [4], the model generated by using yw (weight only) must not

be used if the weight is placed near the beam’s ends as the frequencies obtained are quite
high and inaccurate.

It is seen that the model, by using yc (=yw + ym ), can be used to quickly obtain the
fundamental frequency of loaded beams, owing to its simple algebraic expressions.
Nevertheless, the transcendental expression (3) is particularly useful for cases of higher
mode frequencies.

4.  

Alternate expressions for the fundamental frequency of beams carrying a mass at various
positions have been written in terms of mass ratio b(=M/m). Beams with end conditions
of simply supported, fixed–fixed and clamped–free are considered. For the shape functions,
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a trigonometric function and the three deflection curves involving the mass/load are used.
Although the function yw is commonly used, it is suggested that yc (=yw + ym ) be used for
every case unless the beam’s mass is negligible. Moreover, the model via yc is highly
recommended owing to the fast numerical solving of its simple algebraic functions when
compared to that with the transcendental equations. One can thus quickly and accurately
predict the fundamental frequency of the off-centre loaded beams by substituting the
corresponding mass ratio and position parameter into the respective closed-form
expression of vc .
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